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Abstract. The dynamics of the electron capture by He+ ions from H2 molecule has been investigated in
the four-body first Born approximation. Cross sections differential in the scattering angle of the projectile
ion have been calculated for various molecular orientations. The calculations account for the interference
effects due to the coherent scattering of the particles from the two atomic centers. Total cross sections
(integrated over the projectile’s scattering angle and averaged over all the molecular orientations) have
also been calculated by a three-body version of the classical trajectory Monte Carlo (CTMC) method
based on use of a two-center molecular potential, as well as in a semi-classical quasi-molecular model.
The obtained total cross sections are compared with the available experimental data and other theoretical
calculations. For impact energies above 40 keV a reasonable agreement has been found between the present
theoretical results and the experiment.

1 Introduction

In contrast to stationary phenomena, the theoretical de-
scription of the dynamics of many-body systems at the
microscopic level faces large problems due to its complex-
ity. One example of such a many-body dynamics is the
scattering of charged ions on atomic or molecular targets,
where various processes can take place. The incoming ion
can ionize or excite the target or capture one or more elec-
trons. The cross sections for these various processes de-
pend on the properties of the target and the projectile as
well as on the collision energy. Electron transfer processes
have received considerable attention in various branches of
physics and also in other sciences, as well as in technology
and industry. Atomic collisions affect to a large extent the
plasma radiation which is one of the plasma-cooling mech-
anisms in tokamacs. Furthermore, they also determine the
transport of neutral particles and the flux distribution of
the momentum and energy in the plasma [1].

Studies of ionization or electron capture processes
for molecular species show up slower progresses than for
atomic ones. Several problems emerge in the case of molec-
ular targets. On the experimental side, it is not possible
yet to prepare the molecular target in a particular ro-
tational or vibrational state. Also, due to the different
rotational and vibrational states of the molecules the the-
oretical descriptions of reactions are very demanding as in
realistic descriptions of the processes the molecular struc-
ture must be fully included. Even for the simplest diatomic
molecules such as H2 the sophisticated wave functions
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eventuate the collisional problem almost unmanageable.
Therefore, several approximations have been developed.

The H2 target has received a lot of attention as it
may serve as a test case involving most of the compli-
cations of the molecular targets. The oscillatory struc-
ture in differential cross sections due to the interference
effect observed in collisions of ions with H2 molecule [2]
has a significance for several reasons. The coherent elec-
tron emission or scattering of the projectile ion from the
H2 molecule may be regarded as an analogy of the well-
known Young’s double slit experiment. Another important
point is that the observed interference pattern sensitively
depends on the collision dynamics. This explains the large
number of investigations in the past 40 years dealing with
interference effects in different collision processes involv-
ing the H2 molecule (electron capture, photoionization,
heavy-particle bombardment, etc.).

For the case of electron emission, either very simple
descriptions, like plane waves [3,4] or somewhat compli-
cated descriptions, employing approximate orthogonalized
one-center Coulomb waves [5,6] were used in the past. As
a recent development the triple differential cross section
for the (e, 2e) ionization of the diatomic hydrogen by fast
electron impact was determined using two-effective cen-
ter approximation [8]. Electron capture from hydrogen
molecule by proton was treated using the second-order
Born approximation [10]. The continuum distorted wave
(CDW), the continuum distorted wave eikonal initial state
(CDW-EIS) and the continuum distorted wave-eikonal fi-
nal state (CDW-EFS) approximations were generalized for
hydrogen molecular targets [13].
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The single electron capture process in the colli-
sion of fast proton with ground-state hydrogen molecule
was studied recently by applying a one active-electron
model [14]. In the present work, we use the four-body
first-order Born (B1) approximation, a three-body version
of the classical trajectory Monte Carlo (CTMC) method,
and a quasi-molecular model to evaluate the cross sections
for the He+-H2 collisions in a broad range of the collision
energy. The He+ projectile is interesting from that point
of view that the description of the collision processes with
clothed ions brings additional difficulties in the theoretical
treatment. The simplest way to represent the potential of a
dressed projectile is the use of a constant effective nuclear
charge provided, e.g. by the Slater’s rule. In this case the
projectile is still represented by a pure Coulomb field. A
more realistic description can be given when a short range
field due to the static screening of the electron(s) is added
to the potential of the nucleus (see, e.g., Refs. [15,16]) for
the treatment of atomic collisions. In the present work the
field of the dressed projectile is approximated by an effec-
tive nuclear charge in B1, and by a screened potential in
CTMC. In the quasi-molecular calculations such approx-
imations were not needed, because all the three electrons
were involved in the treatment of the molecular dynamics.

The structure of this paper is as follows. In Section 2.1
the differential cross section factorized into interference
and atomic terms for the process of electron capture from
the H2 molecule by ion impact is derived in the B1 approx-
imation. In Section 2.2 the CTMC theory for the descrip-
tion of molecular collisions is introduced. In Section 2.3 the
quasi-molecular model is outlined. In Section 3.1 the cross
sections for various molecular orientations and the results
averaged over all molecular orientations are discussed. The
total cross sections calculated within the theoretical mod-
els applied in the present work are compared with avail-
able theoretical and experimental data in Section 3.2. Con-
cluding remarks are made in Section 4. Atomic units are
used throughout the paper.

2 Theory

2.1 The first order Born approximation

Let us consider a process where the projectile ion (P)
with Zeff

P effective charge captures an electron form the H2

molecule. The geometry of the collision system is sketched
in Figure 1. At intermediate and high impact velocities
(1–2500 keV), that we consider, the collision occurs so
quickly that the molecule does not have time to rotate
or vibrate appreciably. Therefore, the internuclear vector
ρ connecting the two nuclei is taken as constant during
the collision [10]. The exact prior version of the transition
matrix element for the electron capture is [11]

T prior
if =

〈
ψ−

f |Vi| ϕ+
i

〉
. (1)

Fig. 1. Scheme of the collision system with the definition of
the used coordinates. P denotes the projectile; a, b denote the
atoms of the target; e1, e2 are the electrons of the target; z is
the direction of the beam [11].

Here ϕ+
i is the non-perturbed wave function in the initial

channel which is written as

ϕ+
i =

eiKi·R

(2π)3/2
φi(ρ, r1, r2), (2)

where φi(ρ, r1, r2) is the initial molecular bound state
that is given by the following expression [17]

φi(ρ, r1, r2) = NHL(ρ)
[
e−α∗r1ae−α∗r2b +e−α∗r1be−α∗r2a

]
,

(3)
with α∗ = 1.166, ρ = 1.406 and the normalization factor
NHL = α∗3

π3/2
1√

2(1+s)2
in which s = e−α∗ρ

3 (ρ2α∗2+3ρα∗+3)

and rij is the relative distance of the ith electron from the
nucleus j ≡ a or b. Within the first Born approximation,
the final wave function ψ−

f is expressed by

ψ−
f =

eiKf ·R

(2π)3/2
φf (ρ, r2)φc(r1), (4)

where φf is the bound state wave function of the residual
H+

2 molecular ion represented by a simple linear combina-
tion of atomic orbitals

φf (ρ, r2) = Nf(ρ)(e−αr2a + e−αr2b), (5)

with α = 1.3918 and the normalization factor Nf (ρ) =
α3/2[(2π(1 + exp(−αρ) + αρ + (αρ)3/3]−1/2. Further-
more, in equation (4) φc(r1) =

∑
i Ci exp(−ζpir1) is the

Roothaan-Hartree-Fock wave function of the captured
electron by the He+ ion, with Ci expansion coefficients
and ζpi orbital exponents [12]. Ki and Kf denote the mo-
mentum vectors for the relative motions of the heavy par-
ticles in the initial and the final channels, respectively. Vi

is the perturbation in the entrance channel given by

Vi =
Zeff

P ZT

Ra
+
Zeff

P ZT

Rb
− Zeff

P

r1p
− Zeff

P

r2p
(6)
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with ZT = 1, the charge of the two nuclei in the molecule.
We can write the transition matrix (1) as

T prior
if = N(ρ)

〈
φc(r1)(e−αr2a + e−αr2b) |Vi| eiK·R

× (e−α∗r1ae−α∗r2b + e−α∗r1be−α∗r2a)
〉

=
∑

j,lj �=l

T dir
j,l + T ind

j,l j, l = a, b (7)

withN(ρ) = 2Nf (ρ)NHL(ρ)/(2π)3 (the factor 2 is because
of the two electrons) and K = Ki −Kf , where the direct
term

T dir
j,l = N(ρ)

〈
φc(r1)(e−αr2j + e−αr2l)

∣∣∣∣
Zeff

P ZT

Rj
− Zeff

P

r1p

∣∣∣∣

× eiK·R(e−α∗r1je−α∗r2l)

〉

describes the capture of electron 1 from center j = a or
b by means of the interaction of the projectile with this
electron situated at center j. The indirect term

T indir
j,l = N(ρ)

〈
φc(r1)(e−αr2j + e−αr2l)

∣∣∣∣
Zeff

P ZT

Rl
− Zeff

P

r2p

∣∣∣∣

× eiK·R(e−α∗r1je−α∗r2l)

〉

may be considered as capture of electron 1 from center j
through the interaction of the projectile with electron 2
and with the other center labeled l. Of course, the elec-
trons are shared by both nuclei in the molecule and the
matrix elements admit this interpretation. However, as in
the two-effective center approximation [8], we neglect the
indirect term in the present calculations.

After some algebra, T prior
if can be written in the fol-

lowing compact form

T prior
if = 2N(ρ) [L(α, α∗) + L(α + α∗, 0)]

×
[
Zeff

P ZTURa − Zeff
P Ur1p

]
cos

(
−K · ρ

2

)
(8)

where L is a two-center integral given by

L(α, β) =
∫
dr2e

−αr2ae−βr2b

=
8π
C3ρ

[
α(ρC − 4β)e−βρ + β(ρC + 4α)e−βρ

]

(9)

with C = α2 − β2. URa and Ur1p are given as below

URa = ΣiCiUi(Ra)

= ΣiCi

∫
dRadr1a

eiK·Ra

Ra
e−ζpir1pe−α∗r1a (10)

Ur1p = ΣiCiUi(r1p)

= ΣiCi

∫
dRadr1a

eiK·Ra

r1p
e−ζpir1pe−α∗r1a . (11)

These six-dimensional integrals can be reduced to some
one-dimensional integrals. To this end, we consider
Ui(r1p). Taking the Fourier transform of the term
involving r1p according to

e−ζpir1p

r1p
= − 1

2π2

∫
dq

eiq·r1p

q2 + ζ2
pi

.

The inner integral can be reduced to their closed forms
using the following integral identity

∫
dr1ae

−α∗r1a−iq·r1a = −4π
∂

∂α∗
1

q2 + α∗2 .

The result is

Ui(r1p) =
2
π

∂

∂α∗

∫
dRae

iK·Ra

∫ 1

0

dx

×
∫
dq

eiq·Ra

(q2 + ζ2
pi)(q2 + α∗2)

. (12)

Using the Feynman identity [18] and the integral identity
∫
dq

eiq·Ra

[q2 +Δ2
i ]2

=
π2

Δi
e−ΔiRa ,

after some manipulations equation (12) leads to a one-
dimensional integral of the following final form

Ui(r1p) = 2π
∂

∂α∗

∫ 1

0

dx
1
Δi

∂

∂Δi

4π
Δ2

i +K2
. (13)

An analogous technique leads to a similar expression for
Ui(Ra)

Ui(Ra) = 2π
∂

∂α∗
∂

∂ζpi

∫ 1

0

dx
1
Δi

4π
Δ2

i +K2
(14)

with Δi =
√
ζ2
pi(1 − x) + xα∗2 and α∗ = 1.166.

Finally, the cross section differential in scattering angle
of the projectile Ω ≡ (θ, φ) for a given molecular orien-
tation Ωρ ≡ (θρ, φρ), the doubly differential cross section
(DDCS) can be written as

d2σ

dΩdΩρ
=
μiμf

2π2

Kf

Ki
N(ρ) [L(α, α∗) + L(α + α∗, 0)]2

×
∣∣Zeff

p ZTURa − Zeff
p Ur1p

∣∣2 × 2π
[
1 +

sin(Kρ)
Kρ

]

(15)

where μi and μf are the reduced masses before and after
the collisions.

2.2 The CTMC approximation

The CTMC method is based on the numerical solution
of the classical equations of motion for a large number
of trajectories of the interacting particles under randomly
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chosen initial conditions [20,36]. In the present work we
applied the CTMC model developed recently for molecule
targets. Here we give only a brief summary of the model,
for details see references [37,39].

Assuming the validity of the independent particle
model (IPM), we apply a three-body CTMC approach
that considers the interaction between the projectile, an
active electron, and the ion core of the molecule. With
neglect of relativistic effects, we solve Newton’s equations
of motion for the three particles:

mi
d2ri

d t2
=

3∑
j( �=i)=1

Fij(ri − rj), (i = 1, 2, 3). (16)

Here mi and ri are the masses and the position vectors of
the three particles, respectively. Using the notations e, P,
and T for the electron, projectile, and target, the Fij forces
in (16) are the e-P, e-T, and P-T interactions. The e-T
force is determined as −∇rijVmod(rij), where rij = ri−rj

is the relative position vector of the two particles. Vmod(r)
is a multi-center model potential that describes the inter-
action of the active electron in the mean field created by
the nuclei and the rest electrons of the molecule. For a bare
ion projectile of charge ZP the P-T force is derived sim-
ilarly: −ZP∇rij [−Vmod(rij)]. The e-P interaction in this
case is Coulombic. For a structured projectile ion we ap-
ply the Green-Sellin-Zachor (GSZ) potential [43] for the
determination of the e-P and P-T interactions:

V GSZ(r) = −{ZP − (NP − 1)[1 −Ω(r)]}/r, (17)

where ZP is the nuclear charge, NP is the number of the
electrons in the ion +1, and

Ω(r) = {(η/ξ) [exp(ξr) − 1] + 1}−1 .

The parameters η and ξ depend on ZP and NP, their val-
ues are tabulated in reference [21]. The e-P force is ex-
pressed as −∇rijV

GSZ(rij). The P-T force is obtained in
the same way as for the bare ion projectile but with use of
an effective ion charge Zeff

P . The latter is determined from
the GSZ potential: Zeff

P = −rV GSZ(r).
The molecular potential Vmod(r) is approximated by

the sum of screened atomic potentials. For the hydrogen
molecule considered in this work:

Vmod(r) = VH(rH1) + VH(rH2). (18)

Here rHi = |r−rHi| is the distance of the electron from the
nucleus of the ith hydrogen atom located at rHi. VH(rHi)
is approximated by the GSZ potential:

VH(rHi) ≈ V GSZ(rHi) = −{ZH − (NH −ΔNH − 1)
× [1 −Ω(rH)]} /rHi. (19)

Comparing the form of the above expression with that of
equation (17), one sees that the GSZ potential is modi-
fied by introducing the change of the electron number at
the atomic centers, ΔNH. This can be justified consider-
ing that the potentials at the atomic centers differ from
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Fig. 2. The potential energy of the electron in the hydrogen
molecule at an angle of 80◦ relative to the axis of the molecule.
Solid curve, present model potential; dashed curve, the model
potential proposed by Meng et al. [38].

those of the isolated atoms. For the parametrization of
the potential (19) we may start from the approximate pic-
ture of the hydrogen molecule as consisting of two neutral
hydrogen atoms. The potential for the (e + H◦) system
is obtained by ZH = 1 and NH = 2. With this choice
the value of ΔNH is determined by the condition of the
asymptotical dependence of the molecular potential

Vmod(r)(r → ∞) = −1
r

(20)

that gives ΔNH = 0.5. We note that at each H atomic
centers in the limit rHi → 0 equation (19) leads to the
potential

VA(rHi) = − 1
rHi

. (21)

In Figure 2 we plotted the potential energy of the electron
in the hydrogen molecule given by equation (19). The dis-
tance r is measured from the center of the molecule, and
the electron is located in a direction of 80◦ relative to the
axis of the molecule. We used η = 0.6298 and ξ = 1.325
in the Ω(r) function [21]. Also presented in the figure is
the potential used by Meng et al. [38] in their four-body
CTMC model. The four particles of the latter model are
the projectile, the two electrons and the target nuclei lo-
cated at a constant distance of 1.402 a.u. from each other.
Meng et al. considered the collisions of fully stripped ions
with H2. They exactly took account all the interactions be-
tween the four particles, except that the electron-electron
interaction was approximated by a mean potential. The
two-center molecular potential of Meng et al. reads

Vmod(r) = − 1
rH1

− 1
rH2

+
1
r

[1 − (1 + λr) exp(−2λr)] ,

(22)
where λ = 1.166. As is seen from Figure 2, the potential
proposed in the present work is close to that expressed by
the above equation.
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Fig. 3. The initial probability density of the electron in the
hydrogen molecule along the internuclear axis. The closed
circles and the solid line denote the result of the present
CTMC procedure and that of the four-body CTMC model of
Meng et al. [38], respectively. The dashed line represents the
quantum-mechanical distribution calculated by Wang [40].

For the random choice of the initial values of the
position and momentum coordinates of the electron the
method of Reinhold and Falcón [19] was generalized to
the case of the anisotropic molecular potential. Details of
the procedure can be found in references [37,39]. The ran-
dom choice of the angular variables is the same as in the
standard CTMC theory. For the random choice of the ra-
dial distance r a generalized version of equation (11) in
reference [19] is used:

ω(r, θr, φr) =
∫ r

0

dr′μ r′ 2 {2μ[Ei − Vmod(r′, θr, φr)]}1/2,

(23)
where μ and Ei are the reduced mass and binding en-
ergy of the electron, respectively, and the position vector
the electron is expressed by the polar coordinates, r =
(r, θr, φr). The range of the radial distance in the direc-
tion (θr, φr) is confined to the interval 0 < r < r0(θr, φr)
because of the condition that the kinetic energy is posi-
tive. The maximum value r0(θr, φr) is obtained as the root
of the equation

Ei − Vmod(r, θr, φr) = 0. (24)

The determination of r starts with the random choice of
an ω value in the interval [0, ω(r0)] in a selected direc-
tion (θr, φr). Then r is obtained from the inverse of the
ω(r, θr, φr) function given by equation (23). A further in-
gredient of the procedure is the so-called “volume correc-
tion” by which the choice of the different directions in the
molecule is weighted. The weight function is determined
assuming that the probability of finding an electron at a
given (θr, φr) direction is proportional to the volume of
the integration in equation (23) at the maximum radial
distance, ΔV ∝ r30(θr , φr).

As a check of the above procedure, in Figure 3 we
compared the initial probability density of the electron

along the internuclear axis of H2 with that obtained by
Meng et al. [38] in their four-body CTMC model. The
figure shows also the quantum-mechanical result for the
ground state of the molecule as calculated by Wang [40].
The agreement between the two CTMC models is good.

Besides the position and momentum coordinates of the
electron, a further initial characteristics of the molecule is
its orientation. In experiments that determine integrated
(total) cross sections no information exists about the ori-
entation of the molecule. Accordingly, in the calculations
we also assume a random orientation. This is implemented
in the present CTMC model by the random rotation of
the molecule using the three Euler angles at each collision
event.

Further details of the calculations are as follows. As-
suming the validity of the Franck-Condon approximation,
the calculations were carried out at fixed, equilibrium ge-
ometry of the H2 molecule. We used the value 1.4 a.u. for
the ground-state internuclear distance, and 0.567 a.u. for
the ground-state binding energy.

The integration of the equations of motion was started
at such a large distance R0 between the incoming projec-
tile and the molecule at which the relative change of the
binding energy of the electron due to the perturbation
by the projectile was less than 10−4. After the collision
the calculations were made in two steps. In the first step
the integration was continued until the projectile recedes
to the same distance as that of the initial approach, R0.
This distance is large enough to identify the main reaction
channels (excitation, ionization, and charge transfer). In
the second step only collision events leading to ionization
are regarded, and the trajectories of the particles are cal-
culated up to R = 103 a.u.

The goal of the present CTMC calculations was the
determination of the cross section for the process of the
single electron capture. By the analysis of the calculated
electron trajectories one-electron ionization and capture
probabilities can be deduced as a function of the impact
parameter b. Introducing the notation pc(b) for the cap-
ture probability, in the independent particle model the
probability of the event that only one electron is captured
is given by

P (b) = 2 pc(b) [1 − pc(b)] . (25)

The cross section is obtained as

σ = 2π
∫ ∞

0

b P (b) db. (26)

As a further check of the present CTMC model, in Fig-
ure 4 we compared the results of our calculations for the
single electron capture from the H2 molecule by bare He2+

ion with those obtained by Meng et al. [38] in their four-
body CTMC model. Also plotted in the figure are the ex-
perimental data measured by Shah and Gilbody [41] and
Hvelplund and Andersen [25]. The agreement between the
two CTMC models is excellent. Both theories provide a
good description of the experimental data except below
10 keV amu−1, where the present calculations show an
increasing deviation from the experiment with decreasing
impact energy.
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Fig. 4. Single electron capture cross section for He2+ on H2

collisions. Theories: solid line, present CTMC; dashed line,
four-body CTMC of Meng et al. [38]. Experimental data: closed
circles, Shah and Gilbody [41]; open circles, Hvelplund and
Andersen [25].

2.3 The quasi-molecular description

The molecular model applied in the present work has been
discussed in details in previous works [26–29], here we
give only a short summary. The main approximations of
the model are as follows. It is a semi-classical (impact-
parameter) description: the motion of the nuclei is deter-
mined by the classical mechanics, while the dynamics of
the electrons is treated quantum mechanically. The pro-
jectile ion is assumed to follow a straight-line trajectory,
R(t) = b + vt. Here R is the distance between the He+

ion and the center of mass of the H2 molecule, and v is
the collision velocity.

The model applies the sudden approximation for the
roto-vibrational motion of the molecules, considering that
the electronic transitions are much faster than the rotation
and vibration motions. Furthermore, due to the regarded
relatively large collision velocities, it is assumed that the
roto-vibrational wavefunction of H2 does not change ap-
preciably during the collision, and, therefore, the calcu-
lations can be performed with a frozen (ground-state)
internuclear distance ρ, and with a constant molecular
orientation angle θ.

The evolution of the electronic wave function of
the collision system is governed by the time-dependent
Schrödinger equation

Ĥel ψ(r; ρ,b,v, t) = −i ∂
∂t
ψ(r; ρ,b,v, t). (27)

Here b, v and ρ are constant parameters in ψ(r; ρ,b,v, t).
Ĥel is the clamped-nuclei Born-Oppenheimer electronic
Hamilton operator. To find the solution of equation (27),
ψ is expanded on the basis of the eigenfunctions {ϕi} and

eigenvalues {εi} of Ĥel:

ψ(r; ρ,b,v, t) =
∑

j

aj(ρ,b,v, t)ϕj(r; ρ,R(t))

× exp
[
−i

∫ t

0

εj(ρ,R(t′)) dt′
]

(28)

with
Ĥel ϕj(r; ρ,R) = εj(ρ,R)ϕj(r; ρ,R). (29)

Replacing the expansion (28) into equation (27), one
obtains the following system of coupled differential
equations:

i
daj(t)
dt

=
∑

k

ak(t)
〈
ϕj

∣∣∣∣Ĥel − i
∂

∂t

∣∣∣∣ϕk

〉

× exp
[
−i

∫ t

0

(εk − εj) dt′
]
. (30)

The decomposition of the matrix elements 〈ϕj | ∂
∂t |ϕk〉 con-

taining the dynamical (non-adiabatic) couplings into those
containing the radial and rotational couplings, 〈ϕj | ∂

∂R |ϕk〉
and 〈ϕj |iLy|ϕk〉 respectively, leads to

i
daj(t)
dt

=
∑

k

ak(t)
(
〈ϕj |Ĥel|ϕk〉 − i

vRz

R

〈
ϕj

∣∣∣∣
∂

∂R

∣∣∣∣ϕk

〉

−i vb
R2

〈ϕj |iLy|ϕk〉
)

× exp
[
−i

∫ t

0

(εk − εj) dt′
]
. (31)

In solving the coupled differential equations we consid-
ered number of states of the HeH+

2 quasi-molecule which
could be correlated with the entry channel and result in
charge-exchange by means of non-adiabatic couplings. In
the choice of the states we assumed that the electron spin
was conserved in the collision. The potential energy curves
and the non-adiabatic coupling matrix elements [30] be-
tween the relevant states were computed as functions
of R, whereas ρ was kept fixed at its optimized value in
the ground state. The molecule structure calculations were
made by the quantum chemistry software package MOL-
PRO [31]. We applied the state-averaged Complete Active
Space Self-Consistent Field method to carry out compu-
tations for the lowest five electronic states of the HeH+

2
quasi-molecule with equal weight factors:

He(1 1S) + H+
2 (X 2Σ+

g )
He+(1 2S) + H2(X 1Σ+

g ) (entry channel)
He(1 3S) + H+

2 (X 2Σ+
g )

He(2 1S) + H+
2 (X 2Σ+

g )
He(1 3P) + H+

2 (X 2Σ+
g ).

After solving the coupled equations the probability and
the partial cross section of a capture channel f is
obtained as

Pf (b, v; ρ, θ) = lim
t→+∞ |af (t; ρ, θ, b, v)|2, (32)
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Fig. 5. DDCS for single electron capture from hydrogen
molecule by He+ ion at 1 MeV amu−1 incident energy for var-
ious molecular orientations: θρ = 0; π/6; π/4; π/3; π/2 rad and
φρ = 0.

and

σf (v, ρ, θ) = 2π
∫ ∞

0

Pf (b, v; ρ, θ)b db, (33)

respectively.
The partial cross sections for the transitions be-

tween the different quasi-molecular states involved in the
charge transfer process were calculated numerically us-
ing the EIKONXS code based on an efficient propagation
method [32]. The total cross section was then obtained
with summation over all charge exchange channels and by
averaging for nine different molecular orientations. The
orientation averaged cross section was approximated by
the Franck-Condon formula for homo-nuclear targets [33].
The calculations were made in the 1–200 keV laboratory
energy range (0.17–2.45 a.u. collision velocities).

3 Results and discussion

3.1 Differential cross sections

In this subsection the results for various differential cross
sections for the He+ + H2 collision evaluated in the B1
model are discussed. At present there are no experimental
data for the capture from oriented hydrogen molecules,
therefore, only the theoretical results are discussed.

In Figure 5 DDCSs (see Eq. (15)) at incident energy
1 MeV for fixed molecular orientations are presented. The
oscillating behavior of the DDCS as a function of θ is
well visible in the figure. The interference patterns are
attributed to the term cos(−Kρ

2 ) in the transition ampli-
tude (8) or to the term sin(Kρ) in the differential cross
section (15). Both the two-body interaction potentials VPT

and VTe contribute to the interference structure. As it can
be seen from this figure, for θρ = 0, i.e. when the tar-
get axis is parallel to the incident beam direction, there is
no interference pattern. The same happens when θρ = π.
As θρ increases or decreases from the parallel direction to

Fig. 6. Single differential cross sections (see Eq. (34)) for the
He+ + H2 → He◦ + H+

2 collisions at various impact energies.

larger or lower angles, the interference pattern becomes
more visible and the number of oscillations in a fixed an-
gular range of the scattering angle θ increases. Obviously,
the diffraction pattern is the most dominant when the
direction of the molecular axis is perpendicular to the in-
cident beam direction. The observed interference pattern
shows similarity with that appearing in Young’s double-
slit experiment. The two atomic centers of the target play
the role of the double slit in this case.

The interference pattern depends upon the distance
between the slits d = ρ sin θρ and the wavelength of
the scattered particle (λ). For a definite value of wave-
length and a definite range of the scattering angle (0 <
θ < θmax) the maximum number of oscillations is m =
2ρ sin θρ sin θmax

λ . As the scattering angle θ increases, the
number of oscillations increases and its maximum occurs
at θρ = π/2 rad [23].

Figure 6 presents single differential cross sections
for various projectile energies obtained by averaging the
DDCS (15) over all directions of the molecular axes ρ,

dσ

dΩ
=

1
4π

∫
d2σ

dΩdΩρ
dΩρ. (34)

In all the curves, the oscillating structure observed for
the DDCS in Figure 5 disappeared completely. It can be
seen from Figure 6 that the single differential cross sec-
tion decreases monotonously with the increase of θ for
all impact energies. Interestingly, there is no indication
of the Thomas two-step scattering mechanism even at the
highest impact energy [23].
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Fig. 7. Dependence of the interference patterns in the DDCS
on the internuclear separation at 1.3 MeV impact energy. The
direction of the molecule is: θρ = π/2 and φρ = 0 rad.

In Figure 7 DDCSs evaluated for different internuclear
distances are presented. The impact energy is 1.0 MeV
and the direction of the molecule is fixed for θρ =
π
2 , φρ = 0 and three various internuclear separations,
ρ = 1.306, 1.406 and 1.506 are considered. It is well seen
that the variation of internuclear distance causes displace-
ments of the peaks in the angular distribution of the dou-
ble differential cross section.

Figure 8 presents the

dσ

d cos θρ
=

1
2π

∫ 2π

0

dφρ

∫
d2σ

dΩdΩρ
dΩ (35)

single differential cross section as a function of θρ at
1.0 MeV impact energy for three different values of nu-
clear separation. The three curves have a similar shape
but the magnitude of the cross sections depends on the
value of ρ especially at the two end angles, θρ = 0 and
θρ = 180◦.

DDCSs for fixed, perpendicular molecular orientation
with respect to the incident beam (θρ = π/2 and φρ = 0)
at various projectile energies are shown in Figure 9. We
know that by increasing the projectile energy, the wave-
length of the incoming particle decreases, so the number
of peaks in a definite θ interval increases. The number
of peaks in the 2 mrad angular interval are 3 and 5 for
400 keV and 1.5 MeV impact energies, respectively. It can
also be seen from the figure that as the projectile energy
increases the differential cross section decreases rapidly.

Fig. 8. dσ/d cos θρ versus θρ at different internuclear separa-
tions for 1.0 MeV impact energy.

Fig. 9. Double differential cross sections for fixed orientations
of the molecular axis (ρ is perpendicular to the incident beam)
at different projectile energies.

3.2 Total cross sections

The total cross section (TCS) integrated over projectile
scattering angle and averaged over all possible orientations
of the molecule is given by

σ =
1
4π

∫
dΩρ

∫
dΩ

d2σ

dΩdΩρ
. (36)

In Figure 10, TCS’s calculated in B1 for the single-electron
capture from H2 molecule by the impact of 1–5000 keV

http://www.epj.org
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Fig. 10. Total cross section for single electron capture in
He+ on H2 collisions. Theories: thick solid line (red), present
CTMC; thin solid line, five-body CTMC of Alessi et al. [22];
dotted line, present atomic CTMC; dashed-dotted line, present
B1; thick dashed line (blue), present quasi-molecular model.
Experimental data: closed circles, Oak Ridge National Labora-
tory (ORNL) data tables [35]; closed squares, Allison et al. [24];
open circles, de Heer et al. [34]; open squares, Hvelplund and
Andersen [25].

He+ projectiles are compared with several sets of exper-
imental measurements [22,25,34,35] and with other theo-
ries. As can be seen, B1 shows a reasonable agreement
with the measurements from medium to high impact
energy regimes.

In the figure the predictions of the present CTMC
theory and the quasi-molecular model (see Sects. 2.2
and 2.3, respectively), as well as the CTMC results of
Alessi et al. [22] are also plotted. The CTMC model ap-
plied by the latter authors is a five-body description pro-
posed originally by Wood and Olson [42] for the double
electron removal from H2 by collisions with highly charged
ions. This model differs from the four-body description of
Meng et al. [38] in that the initial state of the molecule is
approximated by two independent hydrogen atoms. Each
electron is bound initially to its parent atomic center by
the Coulomb force, and has no dependence on the other
atomic center or the other electron. The internuclear dis-
tance is not constant, the interaction between the hydro-
gen atoms is described by a Morse potential. The electron-
electron and electron-nucleus interactions are turned on
in the course of the collision when an electron reaches the
continuum with respect to its parent nucleus.

Similarly to the present CTMC description, Alessi
et al. [22] also used the GSZ potential to represent the
interaction of the electrons with the partially stripped
He+ projectile. Besides the total cross section, the au-
thors determined also partial cross sections as a function
of the principal quantum number n of the final state of the
captured electron. Considering the partially filled ground
state of He+, the cross section for n = 1 was reduced by a
factor of 1/2. In our CTMC calculations we did not deter-
mine n-dependent cross sections. For a consistent compar-
ison between the two models, we estimated the effect of

the above factor on the present results. Assuming the 1/n3

dependence of the capture cross section, we took into ac-
count the effect by applying a correction factor (0.5 + 1/8
+ 1/27 + 1/64 + · · · )/(1 + 1/8 + 1/27 + 1/64 + · · · ) =
0.578 to the total cross section.

As it is seen from Figure 10, the two CTMC models are
in a reasonable agreement. Both theories provide a good
description of the experimental data, except for the range
of the low impact energies (below 10 eV) where deviations
up to a factor of five occur between the experiment and
the present CTMC model.

To see the effect of using the two-center potential in the
present CTMC model, we also plotted in Figure 10, the
results of an “atomic” CTMC calculation. As an atomic
approximation, the cross section for H2 is calculated sim-
ply by taking twice the cross section obtained for the hy-
drogen atom. For the calculation of the latter we applied
the standard CTMC model, in which we used the molec-
ular binding energy (Eb = −0.567 a.u.) and an effective
target nuclear charge obtained as ZT =

√
2|Eb| = 1.065.

One may conclude from the figure that the difference be-
tween the molecular and the atomic approximation is rel-
atively small. In the intermediate energy range the two
models resulted in identical cross sections. Larger devi-
ations, up to 70%, occur at the lower lower and higher
impact energies.

It was the failure of B1 and CTMC at low collision
energies that motivated us to make the quasi-molecular
calculations. As is seen in Figure 10, the results of the
latter calculations are in a reasonable agreement with
the experiment and CTMC at intermediate impact en-
ergies. In contrast to CTMC, the quasi-molecular model
correctly reproduces the decreasing tendency of the ex-
perimental data with decreasing impact energy. However,
it does not show the minimum seen in the experimental
data at about 4 keV, and below the minimum it strongly
underestimates the measured cross sections. The possible
reason of this behavior is that we could involve only a
few of the densely packed electronic states of the HeH+

2 in
the electronic structure calculations. The involvement of
more states would have increased the computation time
enormously.

4 Summary and conclusions

The four-body first Born approximation has been applied
for the description of the single electron capture by He+

ions from the hydrogen molecule. Double differential cross
sections have been calculated for different orientations of
the molecule. The obtained DDCSs show the interference
patterns due to the coherent scattering of the particles
from the two atomic centers of the molecule. The interfer-
ence patterns disappeared when the DDCSs were averaged
over the orientations of the molecule.

Total cross sections have been obtained by integrat-
ing the DDCS over the scattering angle of the projectile
and averaging it over the molecular directions. A three-
body CTMC model worked out for molecular targets has
also been applied for the calculation of total cross sections.
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A good agreement has been found between the present
CTMC results and the calculations of Alessi et al. [22]
made in a more realistic, five-body CTMC approach. To
account for the increasing role of the quantum mechanical
effects at low impact energies, we made total cross section
calculations within a quasi-molecular model.

In lack of differential experimental data for the inves-
tigated process, a comparison with the experiment was
made only for the total cross section. An acceptable agree-
ment between the present theoretical results and the avail-
able experimental data was found only in the intermediate
and high-energy regimes of the impact energy. The failure
of the B1 approximation below 40 keV is explained by
its limited validity. The CTMC and the quasi-molecular
model proved to be better descriptions at low energies, but
they only partially accounted for the discrepancy between
the theory and experiment.
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Bacchus-Montabonel, Phys. Rev. A 81, 062711 (2010)
28. E. Rozsályi, E. Bene, G.J. Halász, Á. Vibók, M.-C.
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