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A B S T R A C T   

A theoretical study of integral and differential cross sections as well as of spin-polarization effects is reported for 
elastic electron scattering by zinc atoms at collision energies up to 3 keV. It has been shown that a P-wave shape 
resonance appears in the low-energy range of the integral cross sections. Its energy is about 0.19 and 0.20 eV, 
while its width is about 0.309 and 0.356 eV for the j = 3/2 and j = 1/2 total angular momentum of the electron, 
respectively. The differential cross sections of scattering and the Sherman-functions S(E, θ) are computed by the 
parameter-free complex optical potential method. The calculated data are in a good overall agreement with the 
available experimental and theoretical data in the literature. The energy and angular positions have been located 
for five critical minima in the differential cross sections. The low-energy minimum is located at [6.63 eV; 
102.34◦], while the high-energy minimum is at [347.53 eV; 124.11◦]. Ten points for the scattered electrons’ total 
spin-polarization (S = ±1) have been found in the vicinity of the critical minima along with the energy and the 
angular widths of the spin-polarization peaks (where |S| ≥ 0.9).   

1. Introduction 

The zinc atom, along with Cd and Hg atoms, belongs to the IIB group 
of the Periodic Table and is characterized with mono-electronic sub- 
valence configurations – [core](n-1)d10ns2, where [core] = [Ar], [Kr], 
[Xe4f14] and n = 4, 5, 6. Due to their properties, the elements of this 
subgroup are used in various fields of technology, for instance in 
modeling the physical processes of low-temperature plasma, in solid- 
state and surface physics, etc. 

The differential (DCSs) and integral cross sections (ICSs) of elastic 
electron scattering by zinc atoms have been recently measured [1] at 
energies between 10 and 100 eV. DCS data have been obtained in the 
angular range of 10–150◦ with an angular step of 5◦ and 10◦. The 
measured values are in a good agreement with the results of different 
theoretical methods, including the optical potential (OP), B-spline 
R-matrix (BSR) [2] and convergent close coupling (CCC) [3] models. 
The authors of work [1] have used the non-relativistic (NOP) and rela-
tivistic (ROP) optical potential model for their calculations (see the 
details in Ref(s). [5] and [1]). In both these approaches, the optical 
potential contains the static, exchange, polarization and absorption 
terms, however the absorption effects significantly differ in the two 

cases. 
The recommended theoretical values for elastic, inelastic (total cross 

sections of discrete excitation and ionization) as well as momentum 
transfer cross sections are discussed in work [4]. These scattering data 
are computed for a broad range of energies (0.01–5000 eV) using the 
non-relativistic and relativistic optical potential approaches [5] (see also 
[4]). It is worth to mention that the low-energy behavior of elastic 
electron scattering by zinc atoms (e– + Zn) is poorly investigated and 
theoretical studies are important for these processes. The nature of the 
minima along the DCS also requires more research, with the aims to find 
which of them can be treated as critical minima (CM) and also to 
investigate the spin-polarization of electrons inside and in the vicinity of 
these minima. 

The studies [6,7] are devoted to calculate the properties of the CM in 
order to compare with experiment [8] for DCS minima. The e– + Zn 
elastic scattering is studied from 10 up to 40 eV energies in the rela-
tivistic approximation of the polarized orbitals method with a frozen 
core approach. This model is based on the Dirac-Fock equations with 
exact exchange and model polarization potentials, but without taking 
into account the absorption effects. The elastic cross sections in [9] are 
calculated for e– + Zn and e– + Cd scattering by the optical potential 

* Corresponding author. 
E-mail address: demes.sandor@atomki.hu (S. Demes).  

Contents lists available at ScienceDirect 

Journal of Electron Spectroscopy and Related Phenomena 

journal homepage: www.elsevier.com/locate/elspec 

https://doi.org/10.1016/j.elspec.2023.147365 
Received 3 May 2023; Received in revised form 21 June 2023; Accepted 22 June 2023   

mailto:demes.sandor@atomki.hu
www.sciencedirect.com/science/journal/03682048
https://www.elsevier.com/locate/elspec
https://doi.org/10.1016/j.elspec.2023.147365
https://doi.org/10.1016/j.elspec.2023.147365
https://doi.org/10.1016/j.elspec.2023.147365
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Electron Spectroscopy and Related Phenomena 266 (2023) 147365

2

model, including the static, polarization and exchange (Furness-Mc-
Carthy) terms. Collision energies from 12.5 to 200 eV are considered. 

In the vicinity of the deepest minimum (i.e. the so-called critical 
minimum) of an ‘electron’ + ‘atom’ DCS, the scattered electron’s total 
spin-polarization can be derived [10]. It is important to note however 
that such specific scattering properties like the CM and the 
spin-polarization parameters are good probes of both the experimental 
as well as the theoretical methods. The properties of the CM in elastic 
electron scattering by mercury atoms (which is the last element of 
subgroup IIB, where zinc belongs too) have been studied in our previous 
work [11]. 

In the present paper, we study the general behavior and the specific 
features of the integral (resonances) and differential (minima) cross 
sections as well as of the spin-polarization (Sherman functions, Total 
Polarization Points) in e- + Zn elastic electron scattering, using the 
relativistic OP approximation. A broad collision energy range is 
explored, from 0.01 up to 3000 eV. In addition, we compare the calcu-
lated cross sections using our approach with those of obtained by the 
ELSEPA code [12]. The relativistic effects have been taken into account 
by implementing into the OP the spin-orbit interaction [13] and the 
scalar part of Dirac’s relativistic potential [14]. The different terms in 
the interaction potential for the ‘incident electron’ + ‘target atom’ sys-
tem are usually defined by the total and valence electron densities of the 
target atom. These densities and the corresponding atomic properties 
are calculated in the local approximation of the density functional the-
ory (DFT), with relativistic effects taken into account. Therefore, the 
description of the scattering process in our OP approximation is 
consistent with the description of the atom to a certain extent. The re-
sults of our calculations for DCSs, ICSs and Sherman functions are 
compared with the available experimental and theoretical data. 

The elastic, momentum transfer and viscosity integral cross sections 
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Fig. 1. Energy dependence of the P-wave partial phase shifts for elastic e- + Zn 
scattering (in radians). RSEP theory: dash-dot line – δ− = δ(j = 1/2), dashed 
line – δ+ = δ(j = 3/2). 

Table 1 
Energy (Er) and width (Γ) of the P-wave shape resonance as well as the energy 
position of the maximum (Emax) in the P-wave partial cross section of the e– + Zn 
scattering.  

Method Er (eV) Γ(eV) Emax(eV) 

j = 3/2 j = 1/2 j = 3/2 j = 1/2 

Present 
with MFM 

0.19 0.2 0.309 0.356 0.28 

Present 
with FM 

0.066 0.044 0.057 0.029 0.07 

Present 
with FEG 

0.43 0.43 1.59 1.51 0.9 

Present 
ELSEPA 

– – – – 0.3 

[1]  – 0.4 (NOP); 
0.3 (ROP) 

[2]  – 0.71 
Exper.[36]  – 0.49  
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Fig. 2. Energy dependence of the P-wave partial cross sections for elastic e- 

+ Zn scattering (in units of 10-20 m2). RSEP theory: dash-dot line – σ1/2, dashed 
line – σ3/2, solid line – σ = σ3/2 + σ1/2. 

Fig. 3. Energy dependence of the inelastic integral cross section σabs (see Eq. 
(19)) for e– + Zn scattering (in units of 10-20 m2). Theory: red solid line – RSEPA 
calculations with absorption potential VaMc; black line with circles – recom-
mended data from Ref. [4]. 

Table 2 
The values of the W(E) parameter (in a.u.) as used in the absorption potential 
VaMc to calculate the e– 

+ Zn scattering parameters.  

E(eV) W(E) E(eV) W(E) E(eV) W(E)

5 0.008926 80 19.060 500 390.02 
8 0.13372 100 27.833 600 522.29 
10 0.28142 125 40.468 700 667.36 
15 0.81090 150 54.790 800 824.42 
20 1.5149 200 88.027 900 993.03 
30 3.3435 250 126.85 1000 1172.27 
40 5.6654 300 170.80 2000 3440.10 
50 8.4310 350 219.42 2500 4847.00 
60 11.606 400 272.26 3000 6412.67  
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are important observables in electron-atom collisions. For instance, the 
cross sections are widely used in solid-state physics as well as in surface 
physics studies. They have also particular applied interest in experi-
mental methods with electron beams as well as in structural analysis for 
material science. The properties of the angular and energy dependence 
of the cross sections and even the scattering phase shifts could be used in 
various applications. Therefore, the need to obtain reliable and detailed 
collisional data for ‘electron’ + ‘atom’ scattering is an important stim-
ulus for their further refining. 

From the perspective of a theoretical study, zinc is a many-electron 
atom which requires the inclusion of relativistic and correlation effects 
in its scattering studies. The spin-polarization parameters S(θ), T(θ), U 
(θ) are more sensible scattering properties than the cross sections (for 
example, see [15]). The angular and energy dependence of these pa-
rameters are derived from the direct and spin-flip scattering amplitudes, 
both of which have a real and an imaginary part. Their specific features 
(i.e. the deep, narrow minima or the large maxima) are related to the 
scattered electron’s total spin-polarization, which is determined by the 
properties of the CM in the differential scattering cross sections. 

Following the review of the existing theoretical studies one can see 
that, despite the fact they adequately treat the DCSs and spin- 
polarization parameters, they do not provide however a detailed 
description about the cross section minima, and in particular – about the 
CM. There are also no data available for the extreme behavior of the 
spin-polarization parameters in the vicinity of the CM. 

2. Calculation method 

We will recall hereinafter the studies of the scattering process in the 
relativistic complex OP approach within the RSEPA-approximation, 
where 

V±
opt(r,E) = V±

R (r,E) + iVA(r,E) . (1) 

The scattering properties could be also calculated without taking into 
account the absorption potential VA(r, E), i.e. using exclusively the 
parameter-free, real part of the OP (this is the so-called RSEP- 
approximation): 

V±
R (r,E) = Vst(r) + Ve(r,E) + Vp(r) + V±

so(r,E) + VRS(r,E) . (2) 

The terms Vst, Ve and Vp in (2) are the static, exchange and polari-
zation potentials, respectively. The spin-orbit interaction potential V±

so 
and the scalar part of the Dirac-type potential VRS(r, E) are used in order 
to take into account the relativistic effects of the scattering. The "± " sign 
corresponds to the value of the total angular momentum of the electron 
j = ℓ ± 1/2, ℓ being the orbital angular momentum. Throughout the 
paper we use atomic units (a.u.): ℏ = e = me = 1, E = k2/2 is the 
incident electron’s energy, k is the incident electron’s momentum. 

The static potential Vst(r) is related to the total electron density ρ(r)
of the Zn atom and they are calculated from analytical expressions (see 
(A1) and (A2) in Appendix A) [16]. The parameters in these expressions 
and in the formula for valence density ρ4s(r) (see (В.1), (В.2) in Ap-
pendix В) were obtained by the best fit to the initial density tables. 

The spin-orbit interaction of the incident electron with the target 
atom has been taken into account using the following potential [13]: 

(caption on next column) 

Fig. 4. Energy dependence of the total σtot(E) (23) (a), elastic σeℓ(E) (18) (b), 
momentum-transfer σmom(E) (20) (c) and viscosity σvis(E) (21) (d) integral cross 
sections for e– + Zn scattering (in units of 10-20 m2). Theory: red solid lines – 
RSEPA calculations with absorption potential VaMc; blue dashed lines – RSEP 
calculations; black long dashed lines – calculations by ELSEPA; black dash- 
dotted lines – ROP calculations [1]; black dash-dot-dotted lines – BSR-36 cal-
culations [2]. • – experimental data [1]. Black line with circles – recommended 
data from Ref. [4]. 
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V±
so(r,E) = ζ±(j,ℓ) χ

r
dVst

dr
,

where χ = α2/[2 + α2(E − Vst)
]
,

(3) 

and ζ+(j,ℓ) = ℓ/2 for j = ℓ + 1/2, ζ− (j,ℓ) = − (ℓ+1)/2 for j = ℓ −

1/2, while α = 1/c is the fine structure constant and c = 137 is the speed 
of light. The Dirac-type potential [14] is used to include 
scalar-relativistic corrections: 

VRS(r,E) = −
α2

2
V2

st +
χ
4

d2Vst

dr2 +
3χ2

8

(
dVst

dr

)2

. (4) 

The exchange interaction is generally described by three different 
approximations:  

I. the free electron gas (FEG) approximation [17];  
II. the Furness-McCarthy (FM) potential [18];  

III. the modified FM potential (MFM) based on our methodology. 

In approximation I, the non-relativistic local exchange potential is 

given by (see, for example, Eq.(2) in [19]) 

VFEG
e (r,E) = −

kF(r)
π

(

1 +
1 − κ2

2κ
ln
⃒
⃒
⃒
⃒
1 + κ
1 − κ

⃒
⃒
⃒
⃒

)

, (5)  

where kF(r) = [3π2ρ(r)]1/3, κ(r,E) = ks(r,E)/kF(r), [ks(r,E)]2 = k2 + V(r,
k2/2), k2 = 2E. The V(r, k2/2) potential is used in the form of V(r,k2/2)
= [kF(r)]2 + 2I/[1 + (kr)2

/2], where I is the ionization energy. The 
ionization energy for zinc atom is I = 9.3943 eV [20]. 

In approximation II, the Furness-McCarthy (FM) semiclassical ex-
change (MSCE) potential is used (see the corresponding expressions in 
Ref(s). [18,21–23]): 

VFM
e (r,E) =

1
2
[E − Vst(r) ] −

1
2
{
[E − Vst(r) ]2 + 4πρ(r)

}1/2
. (6) 

In the last approximation III, the FM semiclassical exchange potential 
(6) is modified by introducing a polarization potential Vp(r): 

Fig. 5. Differential cross sections (in units of 10-20 m2 sr-1) for e- + Zn elastic scattering at collision energies of 10(a), 15(b), 20(c) and 25(d) eV. Our present results: 
red solid lines – RSEPA calculations with absorption potential VaMc; blue dashed lines – RSEP calculations. Other theoretical data (black lines): dash-dotted lines – 
ROP [1]; dash-dot-dotted lines – BSR-36 [2]; small dots – CCC [3]. • – experimental data [1]. 
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VMFM
e (r,E) =

1
2
[
E − Vst(r) − Vp(r)

]

−
1
2

{ [
E − Vst(r) − Vp(r)

]2
+ 4πρ(r)

}1/2
.

(7) 

At low energies this potential is less attractive from intermediate 
distances. Consequently, 

⃒
⃒VMFM

e (r,E)
⃒
⃒ <

⃒
⃒VFM

e (r,E)
⃒
⃒ at 0.01 eV energy 

from ~2 up to 15 a0, while at 0.1 eV – from ~2.5–11 a0 and at larger 
distances they are equal. This behavior is affecting the features of 
electron scattering at low collision energies, in the shape-resonance re-
gion. For atoms with higher dipole polarizability αd(0) the effects arising 
from the polarization potential is obviously larger compared to atoms 
with lower αd(0). The FM and MSCE exchange potentials are based on 
the Hatree-Fock theory for the scattered electron. Since the electron is 
scattered by a non-uniform, anisotropic potential of the target, the po-
larization component should be treated in the local exchange potential. 
It is worth to note about a modified MSCE, which was introduced by the 
authors of Ref. [24]: 

VMSCE
e (r,E) =

1
2

{

E − Vst(r) +
3

10
[
3π2ρ(r)

]2/3
}

−
1
2

{[

E − Vst(r) +
3
10
(
3π2ρ(r)

)2/3
]2

+ 4πρ(r)
}1/2

.

(8) 

This exchange potential also can be changed as it is proposed in Eq. 
(7). The potentials defined by Eqs. (6) and (8) refer to the static- 
exchange approximation, while the inclusion of the potential defined 
by Eq. (7) describes the electron scattering process in the static- 
exchange-polarization (SEP) approximation. 

It is physically acceptable to use the local correlation-polarization 
potential within the non-uniform electron gas model [25,26], in the 
role of a polarization potential Vp(r). We apply the local density 
approximation of DFT along with a parameter-free expression for the 
correlation-polarization potential, which are unique for arbitrary 
interatomic distances [19,27]. The polarization potential consists of two 
parts, one of them describes this effect for short-range (SR) distances (i. 
e. in the inner region of the target atom), while the second is for the 
long-range (LR) asymptotic distances: 

Fig. 6. Same as Fig. 5, but for collision energies of 40(a), 60(b), 80(c) and 100(d) eV. • – experimental data [1,37].  
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Vp(r) =

⎧
⎨

⎩

VSR
p (r) , r ≤ rc

VLR
p (r) , r > rc

. (9) 

In the case of the zinc atom the potential VSR
p (r) is used in the spin- 

unpolarized approximation, as described in Ref. [27]: 

VSR
p (r) = εc(rs) −

rs

3
⋅
dεc

drs
. (10) 

The correlation energy density εc(rs) is equal to the paramagnetic 
electron gas density εP

c (rs) and is determined as Eq. (A.4) in [27] shows. 
To calculate the derivative in Eq. (10) we have used the method pro-
posed by Eq. (A.5) in [27]. 

The long-range part of the polarization potential has a well-known 
form, which is determined by the dipole static polarizability αd(0): 

VLR
p (r) = − αd(0)

/
2r4 . (11) 

These two parts of the polarization potential (VSR
p and VLR

p ) first cross 
each other at rc = 5.6574 a0. The dipole polarizability value for the Zn 
atom is αd(0) = 38.640 a3

0, it was calculated in the local approximation 
of time-dependent DFT [19,28]. 

The phenomenological McCarthy-type absorption potential [29,30] 
was used in Eq. (1) as an imaginary term in the complex OP, and is 
defined by: 

VaMc(r,E) = − W(E) r2 ρH(r)
/
[Tloc(r,E) ]2 . (12) 

The local kinetic energy is: Tloc = E − Vst − Ve − Vp − VRS. We used 
the density of the valence 4s2-subshell of the Zn atom (ρ4s(r)) as the 
electron density of the highest filled electron shell, ρH(r). The empirical 
parameter W(E) was derived from inelastic scattering cross sections 
calculated by the Staszewska-type non-empirical absorption potential 
[30] in the quasi-free electron scattering model: 

Vaf 2(r,E) = − νloc(r,E) ρ(r) σb(r,E)/2 . (13) 

Here the local electron velocity is νloc = [2Tloc]
1/2 and, contrary to 

[30], it includes the polarization Vp(r) and VRS(r,E) potentials. The 
average binary collision cross section σb(r,E) depends on the choice of 
expressions for the α(r,E) and β(r,E) parameters [30]. The absorption 
potential Version 2 in [30] is defined by the following parameters: 

Fig. 7. Differential cross sections (in units of 10-20 m2 sr-1) for e- 
+ Zn elastic 

scattering at collision energies of: (a) – 150 (solid), 200 (dashed), 450 (dash- 
dotted) and 700 eV (dotted); (b) – 1000 (solid), 1500 (dashed), 2000 (dash- 
dotted), 2500 (dash-dot-dotted), 3000 eV (dotted) lines. The data are calculated 
using the RSEPA-approximation with the VaMc absorption potential. 

Table 3 
The energy Ec (eV) and angular θc (deg) positions for the critical minima in the 
DCSs of e– + Zn elastic scattering, computed in the RSEP and RSEPA approxi-
mations with the VaMc absorption potential.  

RSEP RSEPA 

Ec (eV) θc (deg) DCSmin (10-20 

m2/sr) 
Ec (eV) θc (deg) DCSmin (10-20 

m2/sr) 

8.17  100.73 5.055(− 4)*  6.63  102.34 4.683(− 4) 
12.57  92.42 3.053(− 4)  28.24  40.47 5.892(− 5) 
88.80  146.47 7.433(− 6)  88.47  147.02 4.670(− 6) 
156.64  74.49 2.927(− 5)  160.71  74.32 2.121(− 5) 
347.24  124.14 1.546(− 5)  347.53  124.11 1.319(− 5)  

* 5.055(-4) ≡ 5.055×10-4 

Fig. 8. Energy dependence of the angular minima positions along the DCSs of 
e–
+Zn elastic scattering and the corresponding critical minima. Our results with 

the VMFM
e (r,E) potential are shown for low-angle (curve 1), intermediate-angle 

(curves 2) and high-angle (curve 3) minima. Legend: solid line – RSEPA, dashed 
line – RSEP. The corresponding critical minima: ○ – RSEPA, □ – RSEP. Exper-
iments: • – [1]; + – [38]. 
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α = k2
F +Δ − 2(Vst +Ve +VRS) and β = α. The Fermi-momentum of the 

target atom is expressed from the total electron density as kF(r) =

[3π2ρ(r)]1/3. The energy of the first inelastic threshold is Δ= 4.0061 eV, 
which corresponds to the 3P term. We calculated its energy in the local 
spin-density DFT approximation [19], and our result agrees well with 
the data from the literature (Δ=4.0297 eV [20]). 

At E < Δ the absorption potentials are equal to zero by definition. In 
addition, these potentials are zero at small distances as well. Thus, in the 
Vaf2 potential at small distances the cross section tends to zero ( σb(r,
E)= 0), when k2 < α+β − k2

F [30]. The VaMc potential of Eq. (12) at 
small distances is negligible as compared to the real part of the OP (see 
Eq. (1)). For instance, at E = 10 eV and r = 0.01 a0 the real potential is 
VR= –4.18⋅103 (a.u.), whereas the imaginary part is VA= –2.64⋅10–11 (a. 
u.). Therefore, for r ≤ 0.01 a0 we assume that VaMc = 0. 

Using the real potential V±
R (r,E) (see Eq. (2)) we can compute the 

real, while by the complex OP V±
opt(r,E) (see Eq. (1)) – the complex 

partial phase shifts δ±ℓ (E) = ε±ℓ (E) + iξ±ℓ (E). The variable phase method 
[31,32] is used to calculate the scattering phase shifts. By this method, 
the absolute phase shifts are obtained from the asymptotes of the phase 
functions ε±ℓ (r,E) and η±ℓ (r,E): 

ε±ℓ (E) = lim
r→∞

ε±ℓ (r,E) ,

ξ±ℓ (E) = −
1
2

ln
[

lim
r→∞

η±
ℓ (r,E)

]

.

These functions obey a system of two bound, first-order non-linear 
differential equations. The behavior of potential V±

R Eq. (2) at low dis-
tances r ≤ r0 depend on the chosen boundary conditions: 

V±
R (r) ≈ V0⋅rp[1+A⋅rs], p > − 2, s > 0.

Distance r0 for heavy atoms is limited by the condition that the 
Coulomb-behavior of the static potential could be not valid at the dis-
tances r < Z/c2 [33]. For example, for the Zn atom in the s-wave case we 
apply a value of r0 = 0.00951 a0. Thus, the initial value of the phase 
function ε±ℓ (E, r) is determined according to expression (2.8) from Ref. 
[32]. The initial value for the second phase function is η±

ℓ (E,r) = 1. The 
numerical method for obtaining the partial phase shifts is the same as we 
have shown in our previous works, see, for example, [19,27]. 

For each collision energy E, the phases δ+ℓ and δ−ℓ were calculated for 
orbital momentum value ℓ = L1, for which 

⃒
⃒ε+ℓ − ε−ℓ

⃒
⃒ < 0.005% and 

⃒
⃒ξ+ℓ − ξ−ℓ

⃒
⃒ < 0.005%. For ℓ > L1 we assume that δ+ℓ = δ−ℓ . For example, 

for collision energies of 10 and 3000 eV we obtain L1 = 4 and L1 = 68, 
respectively. The maximum number of the complex phase shifts are 
calculated using the phase equations, determined from two conditions. 
First, for a given energy and orbital angular momentum ℓ = L2 the 
imaginary part of the phase shift ξℓ must be small enough to be 
considered in the denominator exp(2ξℓ) in the partial-wave expansions 
of the scattering amplitudes f(E, θ) and g(E, θ) (see Eqs. (15) and (16)) 
are to be equal to 1 when taking into account the DCS calculation ac-
curacy. We assume that the values ξℓ < 10− 4 rad satisfy quite well this 

Table 4 
Calculated total polarization points (S=±1) for e- + Zn elastic scattering in the RSEP- and RSEPA-approximations with VMFM

e exchange and VaMc absorption potentials. 
The energy (–/+)ΔE and angular widths (+/–)Δθ are the limits for the energy and angular vicinities, where S ≥ |0.9|.  

RSEP RSEPA 

S(θ) E (eV) θ (deg) (-/+)ΔE (eV) (+/-)Δθ (deg) S(θ) E (eV) θ (deg) (-/+)ΔE (eV) (+/-)Δθ (deg) 

CM [8.17 eV, 100.73o] CM [6.63 eV, 102.34o] 

-0.9 6.85 104.21   -0.9 6.13 104.71   
–1 7.28 103.20 -0.43/+0.37 +1.01/-0.73 –1 6.33 103.97 -0.20/+0.14 +0.74/-0.41 
-0.9 7.65 102.47   -0.9 6.47 103.56   
+0.9 8.66 99.12   +0.91 6.75 101.27   
+1 10.01 96.61 -1.35/+1.41 +2.51/-2.58 +1 6.91 100.78 -0.16/+0.24 +0.49/-0.90 
+0.9 11.42 94.03   +0.9 7.15 99.88   

CM [12.57 eV, 92.42o] CM [28.24 eV, 40.47o] 

+0.9 8.66 99.12   +0.9 26.32 42.12   
+1 10.01 96.61 -1.35/+1.41 +2.51/-2.58 +1 27.06 41.48 -0.74/+0.50 +0.64/-0.39 
+0.9 11.42 94.03   +0.9 27.56 41.09   
-0.9 13.31 91.40 -  -0.9 28.79 39.97   
–1 13.76 90.52 -0.45/+0.66 +0.88/-1.23 –1 29.24 39.67 0.45/+0.67 +0.30/-0.46 
-0.9 14.42 89.29   -0.9 29.91 39.21   

CM [88.80 eV, 146.47o] CM [88.47 eV, 147.02o] 

+0.9 88.13 146.61   +0.9 87.82 147.18   
+1 88.44 146.58 -0.31/+0.21 +0.03/-0 +1 88.11 147.15 -0.29/+0.22 +0.03/-0 
+0.9 88.65 146.58   +0.9 88.33 147.15   
-0.9 88.97 146.35   -0.9 88.62 146.90   
–1 89.19 146.35 -0.22/+0.31 +0/-0.03 –1 88.78 146.90 -0.16/+0.31 +0/-0.03 
-0.9 89.50 146.32   -0.9 89.09 146.87   

CM [156.64 eV, 74.49o] CM [160.71 eV, 74.32o] 

+0.9 153.85 74.44   +0.9 157.95 74.27   
+1 155.39 74.36 -1.54/+1.19 +0.08/-0.10 +1 159.39 74.20 -1.44/+1.15 +0.07/-0.10 
+0.9 156.58 74.26   +0.9 160.54 74.10   
-0.9 156.82 74.71   -0.9 160.86 74.54   
–1 158.07 74.60 -1.25/+1.60 +0.11/-0.08 –1 162.04 74.44 -1.18/+1.52 +0.10/-0.08 
-0.9 159.67 74.52   -0.9 163.56 74.36   

CM [347.24 eV, 124.14o] CM [347.53 eV, 124.11o] 

-0.9 342.8 124.64   -0.9 342.9 124.62   
–1 345.7 124.47 -2.9/+2.5 +0.17/-0.09 –1 345.8 124.45 -2.9/+2.6 +0.17/-0.10 
-0.9 348.2 124.38   -0.9 348.4 124.35   
+0.9 346.5 123.90   +0.9 346.6 123.87   
+1 348.9 123.81 -2.4/+2.9 +0.09/-0.18 +1 349.2 123.77 -2.6/+2.9 +0.10/-0.18 
+0.9 351.8 123.63   +0.9 352.1 123.59    
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requirement. Second, for ℓ = L2, the difference between the real part of 
the phase shift εℓ and the asymptotic value of the phase shift δas

ℓ , 
⃒
⃒εℓ − δas

ℓ
⃒
⃒

must be less than 
⃒
⃒εℓ− 1 − δas

ℓ− 1
⃒
⃒ for ℓ − 1. The phase shift δas

ℓ is calculated 
by the well-known formula [34]: 

tgδas
ℓ =

π⋅αd(0)⋅k2

(2ℓ + 3)⋅(2ℓ + 1)⋅(2ℓ − 1)
. (14) 

At different E, the values of L2 are different as well. For instance, at 
10 and 3000 eV we found L2 = 10 and L2 = 96, respectively, and the 
corresponding phase shift values are (in radians): δ10(10)
= 9.68⋅10− 3 +i 6.34⋅10− 6 and δ96(3000) = 3.70⋅10− 3 + i 9.81⋅10− 5. 
For ℓ > L2 we assume that εℓ = δas

ℓ and ξℓ = 0. Since in the RSEP- 
approximation δ±ℓ (E) ≡ ε±ℓ (E), the values of L1 and L2 are determined 
from the same conditions, but for εℓ. The contribution from 300 partial 
waves was taken into account in the calculation of the amplitude f(E,θ). 

Once the phase shifts δ±ℓ (E) = ε±ℓ (E)+iξ±ℓ (E) are known, one may find 
the direct scattering amplitude: 

f (E, θ) =
1

2ik
∑∞

ℓ=0

{

(ℓ + 1)

[
exp
(
2iε+ℓ

)

exp
(
2ξ+ℓ
) − 1

]

+ ℓ
[

exp
(
2iε−ℓ

)

exp
(
2ξ−ℓ
)

− 1

]}

Pℓ(cos θ) , (15)  

and the spin-flip scattering amplitude: 

g(E, θ) =
1

2ik
∑∞

ℓ=1

[
exp
(
2iε−ℓ

)

exp
(
2ξ−ℓ
) −

exp
(
2iε+ℓ

)

exp
(
2ξ+ℓ
)

]

P1
ℓ(cos θ) , (16)  

as well as the cross sections, in particular the differential elastic scat-
tering cross section: 

dσeℓ(E, θ)
dΩ

= |f (E, θ)|2 + |g(E, θ)|2 , (17)  

the integral elastic scattering cross section: 

Fig. 9. Angular dependence of the Sherman function S(E,θ) as compared with the available experimental data [39] (open circles). Our calculations are: red solid line 
– RSEPA, blue dashed line – RSEP with VMFM

e (r,E) potential, black dash-dotted line – RSEP with VFM
e (r,E). The collision energies on the subplots are: 2 eV (a); 3 eV (b); 

4 eV (c); 5 eV (d); 6 eV (e); 9 eV (f);11 eV (g) and 14 eV (h). Black dotted line – theoretical data from Ref. [40]. 
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σeℓ(E) =
π
k2

∑

ℓ
{(ℓ + 1)exp

(
− 2ξ+ℓ

) [
cosh2ξ+ℓ − cos2ε+ℓ

]
+ ℓexp

(

− 2ξ−ℓ
) [

cosh2ξ−ℓ − cos2ε−ℓ
]}

, (18)  

the absorption cross section (inelastic scattering cross section): 

σabs(E) =
π
k2

∑

ℓ

{
(ℓ + 1)

[
1 − exp

(
− 4ξ+ℓ

) ]
+ ℓ

[
1 − exp

(
− 4ξ−ℓ

) ] }
,

(19)  

the momentum-transfer cross section: 

σmom(E) = 2π
∫ π

0
(1 − cos θ)⋅ sin θ

dσ(E, θ)
dΩ

dθ, (20)  

the viscosity cross section: 

σvis(E) = 2π
∫ π

0
sin3θ

dσ(E, θ)
dΩ

dθ , (21)  

and the spin-polarization parameter – the so-called Sherman S(E, θ)
function [15]: 

S(E, θ) = i
f ⋅g ∗ − f ∗ ⋅g
|f |2 + |g|2

. (22) 

The total scattering cross section is determined then as a sum of the 
elastic and absorption cross sections, i.e. 

σtot(E) = σeℓ(E) + σabs(E) . (23)  

3. Results and discussion 

The calculations have been performed in two approaches of the OP 
model – first, without taking into account the absorption effects (RSEP), 
and second, with absorption included (RSEPA). In the latter case the 
VaMc absorption potential has been used (see Eq. (12)), where the W(E) 
parameter is calculated from as Vaf2 in Eq. (13). 

3.1. Low-energy integral cross sections 

In electron-atom scattering processes it is very important to accu-
rately describe the behavior of the integral cross sections at low en-
ergies, especially below 1 eV, where a strong P-wave shape resonance is 
present in the case of e– + Zn scattering. Fig. 1 shows the energy 
dependence of the P-wave partial phase shifts for j = 1/2 and j = 3/2, 

Fig. 9. (continued). 
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Fig. 10. Angular dependence of the Sherman function S(E,θ) at the total polarization points and at critical minima energies (RSEPA calculations with VaMc ab-
sorption potential). 
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calculated by the VMFM
e (r,E) exchange potential (see Eq. (7)). At low 

energies a strong peak is observed towards π/2 radian. By differentiating 
over the energies of the phase shifts, we obtain the following P-reso-
nance parameters (energy Er and width Γ): for j = 1/2 – 0.2 eV, 
0.356 eV; for j = 3/2 – 0.19 eV, 0.309 eV (see Table 1. for more details). 

Fig. 2 shows the calculated P-wave partial (elastic) cross sections 
σ(E) = σ3/2(E) + σ1/2(E). These cross sections have a maximum at σPmax 

= 4.39157⋅10− 18m2 at ~0.28 eV collision energy. The total integral 
cross sections also have their maximum here, which equals to σmax =

4.56671⋅10− 18m2. As a comparison, the authors of Ref. [1] calculated 
the following energy positions for this maximum: 0.4 eV and 
0.28–0.35 eV, using the NOP and ROP optical potential models, 
respectively. Earlier, this energy was found to be equal to 0.71 eV by a 
49-state BSR-method in work [2]. Our cross section at the maximum are 
in a very good agreement with that of found by the ROP-method in 
Ref. [1], and about two times lower compared to the data from Ref. [2] 
(see also Fig. 4a-b). Table 1 gives the particular energies at which the 
low-energy maximum in the elastic integral cross sections have been 
measured [35] or calculated [1,2]. 

It is worth to mention that the integral cross sections calculated by 
the OP method using the ELSEPA scattering code gives the following 
value at the maximum: 1.54664⋅10-18 m2 at 0.3 eV. Here, the experi-
mental value was used for the static dipole polarizability, which is 47.91 
a3

0 in Ref. [36], and is slightly larger than the value we calculated, 
38.640 a3

0. As one can see, the σmax value computed by the ELSEPA code 
is about 3 times smaller compared to our RSEP results, however the 
energy positions for this maximum agree very well (see Fig. 4b. below). 

3.2. Integral cross sections 

Fig. 3 shows the absorption integral cross sections σabs(E) (see Eq. 
(19)) calculated using the absorption potential of VaMc (Eq. (12)) and 
the recommended inelastic cross sections σinel(E) [4] for e– + Zn scat-
tering. The energy-dependent values of the W(E) parameter involved in 
the absorption potential (12) are presented in Table 2. The inelastic 
cross sections were calculated as a difference of σinel = σtot − σeℓ, where 
σtot is the total (23) and σeℓ is the elastic (18) cross section. As one can 
see in Fig. 3, our cross section reach the maximum earlier as compared to 
Ref. [4]. 

Fig. 4 compares our integral cross sections with the corresponding 
experimental [1], theoretical [1,2] and recommended data [4]. The 
subplots 4a and 4b shows the total σtot(E) and elastic σeℓ(E) cross sec-
tions, respectively, while Figs. 4c and 4d presents the momentum 
transfer σmom(E) (20) and viscosity σvis(E) (21) integral cross sections. 
Our data agree well with the recommended values in Ref. [4] starting 
already from 1 eV. Our elastic integral cross sections σeℓ(E) are very 
close to those computed by the ROP model [1] (the cross sections from 
the NOP model in Ref. [1] continue this behavior, but are somewhat 
smaller than the corresponding ROP-values). At collision energies be-
tween 1 and 10 eV all the cross sections from Ref. [1] agree with the 
corresponding data calculated in Ref. [2]. The cross sections computed 
by the CCC method in Ref. [3] well compare with the NОР-data from 
Ref. [1] between 10 and 100 eV. At energies 60, 80 and 100 eV all the 
σeℓ(E) cross sections are close to the corresponding experimental data. 

The experimental integral cross section of elastic scattering at 40 eV 
in Ref. [37] equals to 2.1⋅10-20 m2. It was measured within a factor of 2 
accuracy. At the same energy, the measurements carried out by the 
authors of [1] found this values to be (4.27 ± 1.49)⋅10-20 m2. The cor-
responding value from our calculations shows 4.485⋅10-20 m2. The 
elastic and momentum-transfer ICSs calculated using the ELSEPA code 
(see Figs. 4b-4c and (18), (20)) above 1 eV well agree with our 
RSEP-data. 

The low-energy maximum in the σeℓ, σmom and σvis integral cross 
section is located in the vicinity of the P-wave shape resonance at 0.28, 
0.26 and 0.28 eV, respectively. At larger energies (i.e. 10–300 eV) these 

cross sections have a rather uniform behavior with a defined secondary 
minimum and maximum. The inclusion of the absorption effects has 
significantly improved the agreement between our cross sections and the 
corresponding experimental data. The calculated values of the integral 
cross sections of the e– + Zn scattering are given in Table S1 of the 
Supplementary Material. 

3.3. Differential cross sections 

The angular dependencies of the DCSs for elastic electron scattering 
by Zn atom are calculated in the RSEP- and RSEPA-approximations and 
are presented in Figs. 5–6 for energies, where experimental data is 
available in Ref. [1]. Fig. 7 shows the DCSs at high collision energies – 
150, 200, 450, 700 eV and 1000, 1500, 2000, 2500, 3000 eV, where no 
experimental data are available at the moment. As one can see in 
Figs. 5–6, the number of minima along the DCSs vary with the energy: at 
10 eV (Fig. 5а) only one minimum is present, while from 15 eV (Fig. 5b) 
up to 25 eV (Fig. 5d) a second minima can be found. By increasing the 
energy, we can discriminate three minima at 40 eV (Fig. 6а), 60 eV 
(Fig. 6b), 80 eV (Fig. 6c) and 100 eV (Fig. 6d). However, when the 
collision energy further increase, the DCSs reveal only two minima again 
– for example, at 150 eV the minimum around 30◦ starts to disappear, 
while at 200 eV (see Fig. 7a) it completely vanishes. At 450, 700, 1000, 
1500 and 2000 eV only one minimum is present, which is less and less 
pronounced with increasing collision energy, and the DCSs become 
monotonous at 2500 and 3000 eV (see Fig. 7b). 

As Fig. 5 reveals, our RSEPA calculations at low angles agree well 
with the theoretical data computed by the ROP, CCC and BSR models. As 
the collision energy increases, all theoretical DCSs are well-comparable 
with the measured data. A fairly good agreement was obtained also, 
when our present results are compared with the corresponding experi-
mental data [1] at larger energies (see Fig. 6). The impact from the in-
clusion of the absorption effects on the angular dependencies of the 
DCSs are rather strong (see the DCSs from RSEP- and 
RSEPA-approximations in Figs. 5–6). The presence of the deep minima 
in the DCSs at energies of 10, 25 and 80 eV in Ref [1] could be obviously 
attributed to the effects of critical minima (see the CM properties in 
Table 3.). The calculated values of the differential cross sections of the e– 

+ Zn scattering are given in Tables S2-S3 of the Supplementary Material. 

3.4. Critical minima in DCSs 

Fig. 8 shows the energy dependence of the angular positions of the 
minima in the DCSs as calculated by the RSEP and RSEPA- 
approximations (see also Table 3). Our RSEPA calculations show that 
at low energies (0.1 – ~19 eV) the DCSs have minima only in the in-
termediate angular range, more specifically from ~80◦ (at 0.1 eV) up to 
maximum ~110◦ (at ~4 eV), which is further decreasing to ~83◦ at 
~16 eV. Above 20 eV, three minima appears in the DCSs, which vanish 
then at a certain high-energy limits: minimum 1 at 129.5 eV, minimum 2 
at 445 eV, while minimum 3 is near ~1000 eV. The inclusion of ab-
sorption effects leads to a slight shift of their positions in general and 
also somewhat decreases their depths. 

Among all the minimal DCS values (DCSmin) we can define some of 
the least DCS values. For example, for the intermediate-angle minima 
with angular positions represented by curves 2 in Fig. 8 there are 2 such 
least DCS points. For the low-angle minima (curve 1) there is one least 
minimum. Finally, for the high-angle minima corresponding to curve 3 
in Fig. 8, there are 2 such lowest DCSmin. Consequently, there are 5 
deepest minima (or Critical Minima, CM) among all DCSmin, within a 
wide energy range (up to 300 eV). We denote the energy and angular 
positions of these CM as critical energy Ec and critical angle θc (see 
Table 3 for details). Note that the energies and angles of the first two low 
energy CMs are strongly affected by the account of absorption effects. 

Our results are compared with the corresponding experimental data 
[8,38] in Fig. 8. In Ref. [8,9 minima have been measured along the DCS: 
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[10 eV, 80◦], [15 eV, 71◦], [20 eV, 53◦], [20 eV, 105◦], [25 eV, 48◦], 
[25 eV, 105◦], [40 eV, 39◦], [40 eV, 99◦], [40 eV, 129◦]. The experi-
mental values obtained for 39◦ and 99◦ at 40 eV in Ref. [37] are close to 
the corresponding data in Ref. [8]. The energy-dependence of the 
calculated angular positions for the DCSs minima in Ref. [6,7] in the 
10–40 eV energy region are well reproduced by our calculations. The 
calculated DCSs [9] at energies 12.5, 25, 100 and 200 eV are charac-
terized with the following 7 minima – 90◦ (4.5⋅10− 22 m2/sr); ~57◦

(5.6⋅10− 22 m2/sr) and ~122◦ (5.6⋅10− 22 m2/sr); ~82◦ (1.7⋅10− 22 m2/sr) 
and ~146◦ (5.6⋅10− 23 m2/sr); ~72.5◦ (8.4⋅10− 23 m2/sr) and 135◦

(2.2⋅10− 22 m2/sr), respectively. 
In papers [6,7] the CM position are found to be [26.0 eV, 116◦] with 

a DCS value of 7⋅10− 23 m2/sr. The authors mention that these data agree 
well with the experimental values from Ref. [8] for the minimum 
[25.0 eV, 105◦]. Based on our calculations one can see that at [25.0 eV, 
105◦] the DCSs have a usual minimum, while the CM is located at 
[28.24 eV, 40.47◦] with a cross section value of 5.893⋅10− 25 m2/sr (see 
its parameters in Table 3). One of the clear signs of a CM is the presence 
of the following relation between the scattering amplitudes defined by 
Eqs. (15)-(16): |f(E, θ)|2 < |g(E, θ)|2. So, in the RSEP model at 12.57 eV 
the СМ in DCS is located at 92.42◦, where |f(E, θ)|2 =

1.10936⋅10− 26 m2/sr, |g(E, θ)|2 = 3.04176⋅10− 24 m2/sr, while at 28 eV 
a simple minimum is found at 108.4◦, where |f(E, θ)|2 =

6.4786⋅10− 23 m2/sr, |g(E, θ)|2 = 8.10707⋅10− 25 m2/sr. According to 
the RSEPA DCS-calculations at 28.24 eV and 40.47◦ the CM is charac-
terized by |f(E, θ)|2 = 8.5099⋅10− 28 m2/sr and |g(E, θ)|2 =

5.8839⋅10− 25 m2/sr, i.e. |f(E, θ)|2 < |g(E, θ)|2. 

3.5. Spin-polarization 

As mentioned above, the advantage of determining the CM positions 
is related to the fact, that in the vicinity of these minima the scattered 
electron’s total spin-polarization could be determined. Table 4 presents 
the positions of the total polarization points, as calculated in the RSEP- 
and RSEPA-approximations. We have identified 10 points in the vicinity 
of the CMs. For each of these points, we calculated the energy (–/+)ΔE 
and angular (+/–)Δθ widths in the vicinity of strong (≥∣90∣%) polari-
zation. Accordingly, the energy and angular widths at S ≥ |0.9| are also 
listed in Table 4. The ΔE and Δθ values non-linearly vary with energy – 
ΔE is increasing up to a few eV, while Δθ is decreasing down to a few 
hundredths of a degree. For the CM [88.47 eV, 147.02o] the widths are 
characterized by their average minimum values. 

Fig. 9 presents the angular dependencies of the Sherman functions S 
(E,θ) Eq. (22) as calculated in the RSEP- and RSEPA-approximations and 
compared with the experiment of Ref. [39]. In general, a good qualita-
tive and adequate quantitative agreement is found between our RSEPA 
theoretical data and the corresponding measured quantities. In 
Fig. 9a-d, f-h we compare our results with the theoretical data from 
Ref. [40], which were calculated considering the relativistic effects and 
exchange interactions. At 3 and 4 eV, the Sherman functions from [40] 
are in a good agreement with the measured values [39]. From 6 eV 
(Fig. 9e) up to 14 eV (Fig. 9h) the absorption effects are more pro-
nounced. One can see in Fig. 9a-d that the difference between the S(E,θ) 
functions calculated with two different exchange potentials – VFM

e (r,E)
and VMFM

e (r, E) – is decreasing with increasing collision energy. The 
strong non-linear variation of the polarization functions from ~+ 0.07 
to ~− 0.35 at 5 eV and angles between 100o-110o (Fig. 9d) is due to the 
CM at [6.63 eV, 102.34o]. For collision energies of 11 and 14 eV (see 
Fig. 9g-h) the calculated Sherman functions are only in a qualitative 
agreement with the measurements carried out in Ref [39]. 

Fig. 10 shows the angular dependence of the Sherman functions 
(RSEPA-approximation) in the vicinity of the five critical minima. As 
one can see, the angular behavior of the S(E,θ) functions reach the 
maximum (+1) and minimum (− 1) in the proximity of the CM, when the 

collision energy is changing from lower (solid curves) towards higher 
(dash-dotted curves) values. This trend in the spin-polarization clearly 
demonstrates the role of the CM in the differential cross sections of 
electron scattering. 

4. Conclusion 

The process of elastic electron scattering by zinc atom has been 
studied in a wide collision energy range (from 0.01 up to 3000 eV) 
within the framework of the relativistic optical potential approximation, 
in which the real part is parameter-free. The differential cross sections’ 
minima and the spin-polarization effects are in the main focus of the 
study. Relativistic effects have been taken into account by applying a 
spin-orbit interaction potential, which is based on the scalar part of the 
relativistic Dirac potential. Our results are in a good agreement with the 
available experimental and theoretical data from literature. 

The complex optical potential, which was used in the present cal-
culations, is mainly determined by the total and valence electron den-
sities of the target atom. The densities and other related properties of the 
zinc atom (static dipole polarizability, ionization potential, etc.) were 
calculated in the local approximation of density functional theory, 
including the relativistic effects. This approximation is used to describe 
the overall electron scattering process, which is then rather consistent 
with the description of the atomic properties. 

A modified Furness-McCarthy exchange potential is proposed by 
counting for the polarization effects. This modified exchange- 
polarization potential allows a more accurate description of low- 
energy (<10 eV) electron scattering. 

The behavior of the elastic integral cross sections have been studied 
at low energies. Its maximum is mostly due to the P-wave partial cross 
sections. The energy dependence of the partial phase shifts implies the 
presence of a P-wave shape resonance at ~0.2 eV collision energy with 
characteristic widths of ~0.309 (j = 3/2) and 0.356 (j = 1/2) eV. 

The calculated energy dependence of the total, elastic, momentum 
transfer and viscosity integral cross section are characterized by a low- 
energy maximum (near 1 eV) and a non-linear "minimum-maximum"- 
type behavior in the 10–100 eV energy range. The inclusion of absorp-
tion effects implies a significant improvement in the cross sections, 
leading to better agreement with the corresponding experimental data. 
The computed integral and differential cross sections are in a good 
agreement with these measured data, while they are also well- 
comparable with other existing theoretical results. Accounting the in-
elastic (absorption) processes in the imaginary part of the optical po-
tential significantly impacts the overall behavior and the amplitudes of 
the cross sections as well as the Sherman functions. 

The total number of minima positions in the differential cross sec-
tions varies from 1 to 3 depending on the collision energy. The energy 
and angular positions are identified for 5 critical minima in the differ-
ential cross sections. According to our RSEPA calculations, the lowest 
among the critical angles θc is around 40.47◦ (at Ec=28.24 eV), while the 
largest is 147.02◦ (at Ec=88.47 eV). The minimum with the lowest 
critical energy is 6.63 eV, and located at θc= 102.34◦, while the highest 
is found to be around 347.53 eV (at θc=124.11◦). The differential cross 
section values in the critical minima are ranging from 4.7⋅10-24 up to 
4.7⋅10-26 m2/sr. 

The Sherman functions calculated at low energies are in a good 
agreement with the experimental findings. In the vicinity of the critical 
minima, the position of 10 total polarization points were determined, 
where the Sherman function are S(E, θ) = ±1. In the vicinity of the 
critical minima there are also some small energy and angular intervals, 
where the spin-polarization is large (|S| ≥ 0.9). 

The results obtained in this work demonstrate that such sensible 
scattering properties like the critical minima in the differential cross 
sections as well as the total spin-polarization points are good candidates 
for theoretical predictions and may serve as a probe of the different 
approximations. Such quantities could be targeted also by experimental 
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studies for elastic electrons scattering. 
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Appendix A. Analytical expressions and parameters used to determine the total electron density ρ(r) and the static potential Vst(r) in the 
case of the zinc atom 

The static potential Vst(r) and the total electron density ρ(r) for the zinc atom are calculated using the following analytical expressions [16]. 

Vst(r) = −
Z
r

[
∑n

i=1
Aiexp

(

− Bir

)

+ r
∑m

j=1
Cjexp

(
− Djr

)
]

(A1)  

and 

ρ(r) = Z
4πr

[
∑n

i=1
AiB2

i exp( − Bir) +
∑m

j=1
CjDj

(
Djr − 2

)
exp
(
− Djr

)
]

, (A2)  

where Z is the charge of the nucleus of the target atom. 
The number and the value of the parameters in Eq. (А2) have been found from the best approximation to the initial table for the density ρ(r), 

calculated within the framework of local DFT. In (А1) and (А2), the number of addends in the sums is n = 3 and m = 4. The parameters A, B, C and D 
are defined as follows: A1 = 1.8797, A2 = − 0.8535 and A3 = 1 − A1 − A2 are dimensionless; B1 = 4.7954, B2 = 37.065, B3 = 84.5, C1 = − 12.203, C2 

= − 18.079, C3 = 0.4567, C4 = 0.1865, D1 = 10.737, D2 = 29.284, D3 = 3.0951 and D4 = 1.6046 are expressed in units of a− 1
0 , where a0 is the first 

Bohr radius of the hydrogen atom. 

Appendix В. Analytical expressions and the parameter used to determine the electron density of the valence 4 s-subshell ρ4s(r) in the case 
of the zinc atom 

The electron density of the valence 4 s-subshell is related to the electron orbital 

ρ4s(r) = 2ϕ2
4s(r) ( В.1) 

The analytical expression for this orbital is given in a Slater-form: 

φ4s(r) =
∑4

i=1
Ki⋅rMi ⋅exp( − Nir) . ( В.2) 

Parameters in Eq. (B.2) are: K1 = − 29.652, K2 = − 35.035, K3 = 2.5719, K4 = − 0.3587; M1 = 1.1331, M2 = 0.8715, M3 = − 0.01558, M4 =

0.9015; N1 = 8.4491, N2 = 13.358, N3 = 3.3074 and N4 = 0.9758. The Mi parameters are dimensionless, while Ni are expressed in a− 1
0 . The 

dimension of the Ki parameters is defined by the ρ4s(r) density normalization. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.elspec.2023.147365. 
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